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The Hamiltonian form of the equations for surface waves can generate very 
nonlinear, realistic-looking solutions even when the Hamiltonian is truncated to low 
order - two or three terms - in its slope expansion. A perturbation analysis of these 
equations shows that most of the basic fluid behaviour is retained in the low-order 
terms ; however, the lowest-order nonlinear equations become dramatically unstable 
a t  wavenumbers greater than g/w2, where w is the local vertical surface velocity. One 
more term in the Hamiltonian mitigates this instability, extending the regime of 
stable slopes and wavenumbers. 

1. Introduction 
The traditional means of deriving solutions to the nonlinear equations of surface- 

wave dynamics is the Stokes expansion, which yields a perturbation-series 
approximation to the surface motion induced by the exact equations. Recently I and 
several colleagues have reported an alternative approach (West et al. 1987) which 
approximates the equations of motion in such a way that they can be implemented 
conveniently on a computer. This makes available solutions of arbitrarily good 
precision to problems of complicated or random wave motion, a t  the cost of some 
fidelity in the physical model. 

This approach starts with the equations of motion in the form first used by Watson 
& West (1975) and expands them, or equivalently the associated Hamiltonian, in a 
series in surface slope. This series, truncated to finite order, defines the approximate 
physical system modelled by the computer. When terms up to second nonlinear order 
are included the usual weak resonant and non-resonant interactions are correctly 
modelled on formal grounds (Henyey et al. 1988) and, as demonstrated in West et al. 
(1987), some surprisingly realistic nonlinear motion can be generated at  respectably 
finite slopes. 

How good an approximation is the truncated Hamiltonian Z To what extent are 
the basic fluid properties such as incompressibility and irrotationality preserved in the 
truncated equations 1 These questions are less straightforward than they sound, for 
in the Hamiltonian formulation the bulk fluid is not present, having been replaced 
by non-local operators connecting surface values of the kinetic fields - potential, 
velocity, and elevation rate. The exact equations are equivalent to the ordinary 
formulation, but in the approximate forms how are the auxiliary parameters 
standing for velocity to be interpreted, when their definitions have been truncated 
along with the Hamiltonian Z I propose to approach these questions by examining 
the behaviour of perturbations to the flow in the form of short-wavelength wave 
packets, which serve as ‘test particles’ whose motion on the surface will provide an 
unambiguous measure of velocity. This effective velocity will turn out to be an 



250 D. M .  Milder 

orderly approximation to the actual velocity implied by the surface potential. The 
perturbation analysis required resembles that in Henyey et al. (1988) for the exact 
equations, and draws upon several of the results developed there. 

This analysis is useful not only in clarifying the nature of t,he approximation but 
also in assessing some of the effects; for example, lingering doubts about the 
convergence of the Hamiltonian series in the presence of modes of wavelength shorter 
than the surface elevation (Brueckner & West 1988) are safely buried. However, 
truncation does lead to unphysical behaviour that appears first a t  high wavenumbers 
as the surface amplitudes increase. Most dramatic is an exponentially growing 
instability in the simplest nonlinear Hamiltonian, occurring in modes whose intrinsic 
phase speed is less than the local vertical volocity. In fact, it  was this instability that 
inspired the perturbation analysis in the first place, when our early simulations of 
Stokes waves kept blowing up and we could find no obvious numerical explanation. 

When the next term in the Hamiltonian is added this particular instability 
vanishcs, to  be replaced by another which sets in a t  higher wavenumbers and surface 
slopes. 

2. The truncated canonical equations 
The surface elevation 5 and potential (6, regarded as functions of the two- 

dimensional lateral coordinate x and time, obey modified forms of the kinematic and 
dynamic conditions, 

(2.1) 
ac - = -vq5-vg+w[l+(vg)",  
at 

- = ~ w " l + ( v g ) " - ( v ( b ) 2 } - g ~ + 7 V *  vg - 34 
at 

, [ ( 3 l ]  

as first introduced by Watson and West (1975) to avoid convergence problems 
arising in the usual Stokes expansion around a mean surface; g and 7 are the 
acceleration due to gravity and the kinematic surface tension. The equations are self- 
contained when the vertical velocity w is connected to q5 by the non-local operator 
D, linear in its effect on q5, 

but depending on the surface profile 6 to all orders in such a way that 6 reproduces 
the vertical derivative a@/az of the bulk potential satisfying Laplace's equation and 
equalling q5 on the surface, that is, 

w = D+, (2.3) 

+(4 = @(X> 4,=&,, (2.4) 

Here and in what follows V will stand for the two-dimensional gradient with respect 
to x. The values of V(6 and V@ a t  the surface are not the same, but rather 

where 

is the operator equivalent of the horizontal gradient at constant depth. Consequently, 
the horizontal velocity is 

u = Vn$ = vq5-wvg. (2.8) 
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The field equations (2.1), (2.2) are a canonical pair derivable from the Hamiltonian 

via 

q5Kq5+gc+227- dx 
dx  dsl 

(2.10) 

where K, the operator appearing in the kinetic energy term, is 

K = [l+(vg)”D-vg.v, (2.11) 

which when applied to produces the normal flux 

See Broer (1974) and Miles (1977). Here 

ds 
- dx = [1+ (V<)”i, 

(2.12) 

(2.13) 

and the fluid density is unity for convenience. Every term in the Hamiltonian is 
exact save the operator D, which must be developed in a series in 6, 

m 

D = D,,, 
n-0 

as will be described below. For moderate surface slope this is a rapidly converging 
series and good approximations to w can be obtained by interrupting the series at 
finite order m, 

w(m) = D(m)$ C Dn$. (2.14) 

One might consider substituting this quantity into the exact equations (2.1),  (2.2) to 
approximate the dynamics, but the resulting system would no longer be canonical. 
Rather, it seems better to truncate the kinetic energy term in the Hamiltonian to a 

m , .  

n=o 

given order via 
(2.15) 

and let the truncated Hamiltonian define the approximate field equations. For 

(2.16) 
m 2 1 this results in 

(2.17) 

36 
- + Vq5* VY = W(,) + (VCI2 W(,-2), at 

aq5 -+&+wq5)2 = (wZ)(m-1) + P O 2  (W2)(,-3) at 

n fn ’<m 
(neglecting capillarity), where 

(w2)(m) = C wnwn, (2.18) 

and so on. These equations remain canonical, obeying the usual conservation laws 
exactly, and they retain other convenient algebraic properties that follow from the 
self-adjointness of the operator K. This property, 

If Kgdx = [gKf dx, (2.19) 
J J 

9 FLM 217 
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follows from Green's theorem in the form 

[(f--g-)ds aG i3F = 0 
an an (2.20) 

applied to a pair of harmonic functions F ,  G ,  whose surface values are f and g. This 
property is clearly true separately a t  each order in g, that is, for each Kn, and also 
for the truncated sum K(m). 

3. Operator expansions and properties 

For a medium of infinite depth one can write 
Suppose F ( x ,  z )  is a harmonic function whose value on the surface, z = LJx), isf(x). 

and 

where k is the magnitude of k. The operator fi is defined by 

(3.3) 

and its specification as a functional of g is the central problem of the Hamiltonian 
formulation. Watson & West exhibited the first two terms in their original paper 
(1975), and subsequently Brueckner showed how to systematically construct higher- 
order terms in a way that is convenient for numerical work (West et al. 1987). Let me 
review this construction briefly along with an alternative one that better reveals the 
formal properties. First, write f ( x )  as 

" 1  
f (x) = l&x)n x knv(k) eik*x (3.4) 

n=O n . k 

by expanding the exponential exp [k&c)]. If we define the scalar operator 1; by 

that is, as the linear operator whose effect is to multiply each Fourier component of 
a function by its wavenumber modulus, we then have 

f(x) = ZF(x,O) (3.6) 

(3.7) 

The operator Z is formally (though perhaps slowly) convergent when applied to 
band-limited physical functions F .  The inverse operator produces F ( x ,  0) from f, 

F ( x ,  0) = F l f ( ~ ) ,  (3.8) 

and because W(x, O)/az = &(x, 0) we have 

D j  = Z l h ( X ,  0) 
= Z i Z - l f ( x )  
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or formally D = ZkZ-1. (3.9) 

The expansion of 8-1 in powers of [ can be recovered from the set of equations 
implied by Zg-l-1 = 0, examined order by order. The zeroth-order term gives 
(Z-l)o = 1, while order n gives 

+ &(2-1),-, + . . .+k = 0, (3.10) 

which is a recursion equation for (&l)n comprising powers of 5, powers of k,  and 
lower-order terms of Z-l. The series for D, 

n!  

a, 

D = x on, 
n=O 

is straightforwardly obtainable from (3.10) as 

(3.11) 

(3.12) 

It is true but not obvious from this form that D is independent of the location of the 
reference plane z = 0, that is, invariant to any additive constant in 5, so that (3.11) 
is actually a slope expansion; see Brueckner & West (1988). 

Another expansion, which reorders the terms in (3.12), makes this property 
explicit. A variation in surface elevation S[ produces 

SZ = S[ZL (3.13) 

directly from (3.7) and consequently 

82-1 = -Z-l(&) 2-1 
= -2-1&$ (3.14) 

(see (3.9)). Then 
Sf) = &@2-1- Z$Z-l&@ 

= S@"DSL$, 

or SD = [SC, D] D, (3.15) 

where [SC, D] is the commutator product 8l$-fiS[. If [(x) is substituted for S[ 
above, the nth-order term is just SD = nDn, so that 

(3.16) 

The invariance of f i n  to an additive constant in 5 then follows explicitly from the 
invariance at lower orders, starting with Do = k. The first few terms are easily 
constructed as 

Do = k, (3.17 a) 

fil = [[,&I$, (3.17 b)  

f i z  = {$[C, [C, $11 $ + [C, 6IZ> k (3.17 c) 

and so on. Applied to the field $, these produce terms w, in the series (2.14) for 
vertical velocity ; similarly, the series for horizontal velocity is 

u, = vq5, u, = - Wnp1 vg. (3.18) 
9-2 
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When equations involving these velocities are truncated to finite order there are 
consequences for elementary properties such as irrotationality and incompressibility. 
In  surface form these are stated as 

v , w - h 4  = 0, (3.19) 

V h . U + D W  = 0, (3.20) 

and could be taken for granted, but it is instructive to prove them algebraically as 
follows. From (3.7) and the chain rule, along with the property Vk = kV, we have 

V Z F  = (VZ) F + ZVF, 

V2F = (Vc)ZLF+ZVB’; and from (3.13) 

setting F = Z-lf yields 
ZVZ-1 = v - (VC) D = Vh, 

(3.21) 

(3.22) 

(3.23) 

which identifies Vh f as the surface value of the ordinary horizontal gradient of F as 
expected. Because products of operators A, b obey 

Z(&) 2-1 = (ZAg-1) (26Z-l) (3.24) 

(3.25) 

whick applied to 4 gives the irrotational property (3.19), and further, since 
V2 + k2 = 0 by definition, 

0 = 2(v2+i2)2-1= v;+D2, (3.26) 

which reproduces incompressibility (3.20). Evaluated order by order in the slope 
expansion, these imply 

X [ (v , )m w n - m  - D m  u n - m ~  = 0 (3.27) 
m=o 

and (3.28) 

consequently in any finite truncation these properties are true only for a mixture of 
orders in the operators and velocity components. For example a t  consistent first 
order, the residual rotation is 

a quantity which can be shown to be small to third order in slope. 
Is there a physical meaning to the breakdown of these properties in various 

truncated orders 1 Even with the approximate Hamiltonian one could in principle 
recover from $ the ‘true ’velocity, which has no such defects. On the other hand, the 
system also exhibits ‘effective ’ velocities, in the form of vertical surface elevation 
rate and and horizontal advection rates for wave groups of infinitesimal group speed. 
These will turn out to be truncated velocities, whose failure to be precisely 
irrotational and incompressible will have consequences. Now, the horizontal 
gradients of these velocities are directly observable, while the vertical gradients are 
noticeable only indirectly, through their role in the formation of the perturbation 
equations. Here, the failure of quantities like (3.29) to vanish can be tied to the 
appearance of extra non-physical terms in the perturbation equations, as will be 
seen. 
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The explicit terms D,, in (3.17) above can be inserted into the expression (2.15) for 
the normal flux operator K and with some manipulation the Hamiltonian series 
exhibited through second nonlinear order as 

(3.30 a )  

(3.30 b)  

(3.30 c)  

The capillary potential energy has been omitted here for simplicity. The field 
equations through this order are 

3 = wo + (wl -24,. vg) + (w,--U1 * vg) (3.31 a)  
at 

(3.31 b)  a# 
- = -s5-t[(vw--:l+ ( q I W J r  at 

and 

with the right-hand sides organized in ascending order - see (2.17), (2.18). 

4. First-order perturbations 

field equations take a simple form when expressed in terms of the combination 
The equations for small perturbations c, qS of an arbitrary solution of the exact 

w,  (4- 1) $11 = $'-C 

which can be read as the value of the perturbed potential on the unperturbed surface 
(Henyey et al. 1988). With 

(4.2) 
d a  
- dt = -+u.v at 

denoting the substantial time derivative on the surface, these equations are 

(see (2.11)-(2.13)) and d#" 
dt 

- + g * c  = 0, (4.5) 

where g* is the effective vertical component of gravity on the accelerating surface, 

dw 
9* = s + z  

One of the more rigorous requirements on an approximate dynamical system is that 
it reproduce the behaviour of short waves on long waves of finite amplitude. In the 
short-wave limit the equations (4.1)-(4.5) lead to the usual horizontal propagation 
and advection of phase and group properties along with such changes of amplitude 
as conserve action, according to eikonal equations in which the underlying long 
waves are represented entirely by the parameters u,  g,, and slope VC. 
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The truncated Hamiltonian provides only a set of equations describing the vertical 
displacement of an abstract surface; the velocity components u, w are present 
parametrically in the equations, but in what sense are they present 'physically ' '2 
Actually the exact surface equations are equally abstract and the most direct 
evidence for horizontal velocity is the advection of 'test particles' in the form of 
eikonal wave packets of very short wavelength through the appearance of u in the 
substantial derivative d/dt. A first-order perturbation analysis of the truncated 
equations may similarly be a useful diagnostic both of the basic physical 
approximations and of potential failures in the modelling of long-wave interactions 
with short waves. Notice however that the modified potential f' in (4.1), the time 
derivative d/dt in (4.2) and the effective acceleration g, in (4.6) all contain velocity 
terms affected by the truncation approximation. For this reason, the approximate 
forms of (4,1)-(4.6) require some care in their derivation. It is best to start with the 
perturbation of the exact field equations and review the steps leading to the preferred 
form above, since these steps are also subject to approximation. The starting form 
for height perturbation is 

(4.7) 
d r  -+u'.VC = w', 
dt 

where primes denote perturbed values on the perturbed surface 6+r. From (3.15) we 
have 

W' = (Dq5)' = DqS + c D2$ - Dc Dq5 
or WN wr - r = D$f/, (4.8) 

where double primes are values inferred on the unperturbed surface, while with the 
aid of (2.7) and (3.19) we have 

u" = u' - g flu = v, q. (4.9) 

These relations are linear in the terms D, Vc subject to the series approximation; 
substitution into (4.7) gives after simple rearrangement 

(4.10) d r  -+ 5"vc. Du- Dw] = [D - 05. V,] $I f ,  

dt 

and linear substitution of (3.19), (3.20) identifies the first bracketed term as V - u  
while the second is K by definition (2.11). This allows us to infer that the 
perturbation equation for C in the approximate system is simply the truncated 
version of (4.3). For the Hamiltonian of order (n+ 1)  in slope, the equation for 5 is 
also order ( n + l ) ,  while the equation for C is order ( n + l )  for those terms 
accompanying variations of $, order (n) for those terms arising from surface 
variations 6, and order (n) for d/dt = a/at+u.V. If we consistently define 

(4.11) 

and $'I 0 -  = $ r ,  $3; = -cwn-l,  (4.12) 

then the truncated form of (4.3) is just 

(4.13) 
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(4.14) I Here, the series for K is 
KO = Do = 2, 
K, = D,-vg.v, 
K, = Dm + ( V t y  D)m-2, 9% 2 2. 

In  the eikonal limit, as the wavenumber k' characteristic of the perturbation fields 
becomes large, the leading term on the right-hand side of (4.13) predominates, 

c+p*u , , ,  = l&'-rw(,))+Ez+E3 ... (4.15) 

which suggests that $ ' - - c ~ ( ~ )  is the preferred form of the modified potential for 
evaluating the approximations. To see this, write 

[C, &If = ei(k+k').x ak)fik') [k'- (k'+ kl] (4.16) 

(')(n) 

k , k  

and use 

(which converges rapidly for k' b k) along with ik f-, V to get 

[g, 21 f = vg. vL-y+ O(V2C) 2-y. 
Then for f = if' we have 

or 

Dl$" = vg.vqs'+o(v~g)qs/ 
KIT = (D,,-vg.V)fY = o+o(v2g)$". 

(4.17) 

(4.18) 

Consequently €2 = Kl(T - C'w(n-1)) 

is small compared with the leading term, as is 

€3 = K 2 ( + C y n - 2 J ,  R, = -$&, [5,2llir 
x &[(V[)Z- (vg.vc-')2] (q5'-@(n-2))  (4.19) 

and so on. 
The corresponding approximation to (4.5) for 4'' is more complicated, first because 

the quantities dqS'/dt and g* are products of series expansions, and second because 
in the exact perturbation of the potential equation, 

0 = -+u'.(v$-u)+gC'-ww' d 6  
dt 

(4.20) 

the term multiplying w vanishes only to a particular order - infinite for the exact 
equations, and through (n+ I )  for the approximate equation (4.13) - so that the sum 
above of mixed-order products up through order (n) generates leftover terms. While 
the truncated equation for c is simple enough, no corresponding simple version of 
(4.20) is obvious for all finite truncation orders, Consequently, the appropriate terms 
must be assembled piecemeal from the truncated products. At leading nonlinear 
order this can be done almost trivially, without resort to the artillery accumulated 
in this section. Terms proliferate so quickly at next order however that the orderly 
identification provided by the foregoing equations is helpful, if not indispensable. 
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5. Leading nonlinear order 
The equation for height perturbations at first nonlinear order reads 

where again 

(;)05'+Cv.uo = lbyl)+K1$;> 

= c?t+uo'v a = -+V$*V, a 
at 

and $'I (1) - - $1'- 0 glwo = $r - 5'&$. (5 .3)  

According to the discussion in $4 the term K1& will become negligible in the limit 
of large perturbation wavenumber k .  The companion equation starts with the 
perturbed form of (3.31b) through first nonlinear order, 

(5.4) 
a# -+q~+Vq5+Vq5'-wowj, = 0, 
at 

and becomes, with the aid of (5 .2) ,  (5.3), 

where 9(1) = g+($) wo. (5.13) 
0 

Through (5.1), or equivalently, (4.7), the term in (5.5) enclosed in square brackets can 
be recognized as 

(5.7) 

so that (5 .8)  

The final term above is not present in the exact equations and arises only in the 
truncation approximation at  lowest order. It can be written as 

wo[5',1;]wo = - w ~ l & + 5 ' ( w o i w o ) + w o [ w o , k ] ~ ,  (5.9) 

in which the first term dominates as k -+ 00, because according to the argument of 
$4 the third term approaches 

[wo, ir ]  5' = VW, * (ir-lVC), (5.10) 

which is of order k'lk smaller than the first term, as is the second term (k denoting 
the wavenumber scale of the unperturbed velocity wo). 

To this order in short wavelength the perturbation equations are 

and 

(5.11a) 

(5.11b) 

Apart from the spurious term accompanying g(l) these resemble the exact equations, 
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which are those of linearized waves in a coordinate system of horizontal velocity 
u, = Vq5 and vertical acceleration (d/dt),w,. It is worth remarking that the first 
nonlinear term in the Hamiltonian is entirely responsible for the advection of waves 
by currents associated with other waves, through the terms u,.V in the pair of 
equations above. The displacement of short waves riding on long waves is fully 
comparable with the long-wave height, which can amount to many wavelengths of 
the short waves. Additional nonlinear orders do not materially change the advective 
behaviour, beyond improving the approximation to u. There is no immediate 
difficulty involving large products of k' and wave height, as there would be in the 
usual Stokes expansion of the solutions. Large ratios of wavelength present a more 
indirect problem at lowest order through the action of the extra term. 

Unfortunately the extra term is always negative, so that wavenumbers Ic' exist 
that drive the effective local gravity negative, 

s" = g(1) - w; k', (5.12) 

for any finite surface velocity. The intrinsic frequency o', given by 

0 ' 2  = gk', (5.13) 

is imaginary at  these wavenumbers, and the associated perturbation modes are 
therefore exponentially unstable. Any finite, band-limited simulation of these 
equations will remain stable provided that 

Iwol < emin, (5.14) 

where cmin is the phase speed of the shortest wave present, 

CLn = g/kmax* (5.15) 

At finite slope E the vertical velocity is of order w, - ec-, where c,, is the phase 
speed of the longest wave present, so that the nonlinearity must be limited by 

(5.16) 

to preserve stability. The presence of an added capillary term 7k2 (approximately; 
see (2.9)) can stabilize the equations at all wavenumbers. The necessary condition is 

(5.17) 
easily shown to be 

lwol < Cmin = (47g)f. 

6. Second nonlinear order 

at second nonlinear order. The first form is just (4.13) made explicit, 
Two equivalent forms of the truncated perturbation equation for height are useful 

coupling fl' to the source term in $y2,., with terms on the right-hand side that become 
negligible in the short-wavelength limit. The second form, 
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will be useful in deriving the equation for q5" below. The substantial derivative carries 
the advective velocity to one order higher than before, 

now including a slope correction to V#. 
The exact equation (4.20) for # leaves so much debris in the form of mixed-order 

products when truncated directly that an ad hoc approach based on the original 
approximate equation (3.31 b )  for # is preferable. That equation and its perturbation 
are 

(6.4) 
-+g{+;[(v$)"w;l)]+w; aq5 = 0, 
at 

(6.5) 
a# -+gg + vq5. Vq5' - w(l) WiI, + w1 w; = 0. at 

and 

The term ;w; has been added and subtracted above to simplify the subsequent 
collection of terms a t  inclusive order (l), which is the order necessary to make the 
resulting equation compatible with (6.1). Adding and subtracting wo VC-Vq5' yields 

while adding and subtracting (d/dt)(,) cwcl, gives 

+w(.,[($) C+U;.V[-W;~) +wl(w;-Vg-V#') = 0. (6.7) 

This is close to the desired form ; the third and fourth terms, which would vanish a t  
infinite order, are the truncation residue. To evaluate the third term, note that the 
bracketed part resembles (6.2) except that the highest-order terms are missing. 
Subtracting times (6.2) then yields 

(1) 1 

-w(l)(u;.vg-w;l) = - w ( l , [ c v . u l - K i l , ~ + K l ( ~ w o ) + k 5 . w l ] ;  (6.8) 

see (4.13). The remaining term can be directly evaluated via (4.8) and (4.14) as 

wl(w; - vg. Vq5') = W,(K, q5'+ [C, L] wo). (6.9) 

Two terms in the expressions above consist of 
operator) quantities, which can be added directly to the effective gravitation : 

multiplied by small scalar (not 

(6.10) 

Two other terms involving 6 standing to  the right of 
dominate at k' -+ 00 : 

are important, because they 

- ( w ( l ) ~ g / w ~ + w ~ ~ ~ ~ o )  = - ( w ~ + w ~ ~ ) ) w ~ & + { w ~ ~ ) [ w ~ , L ] + w ~ [ w ~ , L ] } ~ .  (6.11) 

Here they have been separated into terms proportional to k' and independent of k', 
according to the asymptotic behaviour of the commutator expressions. Remaining 
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terms are small absolutely (K,) or in the short-wavelength limit (Kl). Accordingly, 
we have 

($)(l)4br + [S(Z, + (4 - Wf1J GI c = R(2) = 0, (6.12) 

with R(2) = W(l , [K, (SWO) - R2 $' - [Wl, &I Sl- W l [ K 1 4 '  + [wg, kl s1. (6.13) 

Equations (6.12) and (6.13) are improvements over their counterparts at lowest order 
in two respects. The ordinary parameters u and dwldt are better approximated, and 
the anomalous term accompanying g is smaller by a factor of the unperturbed wave 
slope 6. Exponential instability, though still present, requires higher wavenumber or 
higher slope, such that 

L' w:-w& < -1. (W;--w:l))- = 2 
9 Cmin 

(6.14) 

Such instability is confined to regions where lwol < Iw(,J and because lwll - E I w ~ ~ ,  the 
equations at  this order can stably tolerate slopes not exceeding 

e - (Cmin/Cmax)' = (kminIkrnaxP. (6.15) 

This relation can be made more precise only for specific cases. For example a steady 
progressive wave described by 

6 = sk-lcos8, q5 A Eck-lsinO, 0 = k(x-ct), (6.16) 

in the limit of small slope E ,  has for the quantities above the following values: 

w, = k$ = EC sin 8, 

w1 = [c, 01 wo = -E2csinecos~, 

wZ, - wi = - 2e3c2 sin2 0 cos 8. 

(6.17) 

(6.18) 

(6.19) and 

Consequently the stability parameter can be written 

(6.20) 

in which F ( 8 )  = - 2 sin2 8 cos 6 (6.21) 

reaches its maximum value of 0.770 at positions just behind and ahead of the wave 
trough, 8 = 180"f 54.7". These are the locations at which the exponential instability 
first appears when the quantity (6.20) just exceeds unity. The limiting stable slope 
is plotted in figure 1 as a function of the wavenumber ratio km,,/k. The curve is 
accurate only for small values of slope, but it is qualitatively informative at larger 
slopes, particularly in the comparison with the stability bound for the simpler 
Hamiltonian of $5. 

7. Summary 
The truncation of the surface-wave Hamiltonian to finite order in slope induces 

approximations both in the dynamics and in the surface kinematics. The relations 
among potential, elevation rate, and horizontal velocity are truncated at finite order, 
causing higher-order imperfections to appear in the equivalent expressions for 
incompressibility and irrotationality at  the surface. The equations of motion are 
nevertheless quite fluid-like even at  first or second nonlinear order, particularly in 
the fidelity with which they describe the transport of small waves by larger waves. 
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FIGURE 1 .  Slopes for progressive 'Stokes' waves above which modes at wavenumber k,,, 
become exponentially unstable. 

k,,,lk 

However, the perturbation analysis that gives this reassuring result also reveals 
instabilities which accompany any finite-amplitude motion for the two lowest-order 
Hamiltonians analysed. These instabilities affect modes whose phase speed is less 
than a local critical value; a t  first nonlinear order the critical velocity is just the 
surface elevation rate, while a t  next order it is the harmonic mean of this quantity 
and its first-order correction, so that the unstable wavenumber is increased by a 
factor of the inverse wave slope. The addition of the capillary force can stabilize the 
flow a t  all wavenumbers when the critical velocity parameter is kept below the 
minimum phase speed. 

So far unanswered is the question of whether this kind of instability vanishes when 
terms beyond second nonlinear order are retained in the Hamiltonian, or whether the 
instability merely continues to recede to higher slopes and wavenumbers. 
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